投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

园艺论文_基于Faster R-CNN算法的番茄识别检

来源:中国测试 【在线投稿】 栏目:期刊导读 时间:2021-08-25
作者:网站采编
关键词:
摘要:文章摘要:针对番茄生长环境复杂,枝叶对果实造成遮挡及果实之间存在遮挡等因素,造成番茄难以识别、检测等难题,本文基于Faster R-CNN的番茄识别检测方法进行研究。首先使用AlexN

文章摘要:针对番茄生长环境复杂,枝叶对果实造成遮挡及果实之间存在遮挡等因素,造成番茄难以识别、检测等难题,本文基于Faster R-CNN的番茄识别检测方法进行研究。首先使用AlexNet网络提取涵盖番茄语义、空间信息的特征图;用区域建议网络对特征图进行番茄与背景的二分类、预选框回归训练,用非极大值抑制算法筛选出预选区域;用区域特征聚集方法将预选区域特征图转化为固定大小的特征图,最后针对番茄图像的每个特征图计算分类回归损失,实现对番茄的识别检测。该方法在番茄数据集上进行测试,在重叠度取0.5时,番茄数据集的均值平均精度值为0.839,优于Yolov3算法、SSD算法的0.804、0.773,该方法的平均正确识别率为95.2%。结果表明本方法可准确的识别检测出成熟、未成熟番茄的标签及位置,单样本图像处理时间为245ms,可满足番茄检测的实时控制要求。

文章关键词:番茄,图像检测,特征提取,

项目基金:山东省自然科学基金(ZR2018MC017),山东省重点研发计划项目(2015GNC112004),《中国测试》 网址: http://www.zgcszzs.cn/qikandaodu/2021/0825/1745.html



上一篇: 电信技术论文_融合CNN和SRC决策的SAR图像目标
下一篇: 计算机软件及计算机应用论文_基于机器视觉的

中国测试投稿 | 中国测试编辑部| 中国测试版面费 | 中国测试论文发表 | 中国测试最新目录
Copyright © 2019 《中国测试》杂志社 版权所有
投稿电话: 投稿邮箱: