- · 《中国测试》编辑部征稿[10/30]
- · 《中国测试》杂志社刊物[10/30]
- · 《中国测试》期刊栏目设[10/30]
- · 《中国测试》数据库收录[10/30]
- · 《中国测试》投稿方式[10/30]
- · 中国测试版面费是多少[10/30]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
自动化技术论文_一种适于多场景人群计数的支持
作者:网站采编关键词:
摘要:文章摘要:在利用WiFi信号实现人群计数中,基于信道状态信息幅度(Channel State Information, CSI)存在分类模型滤波不彻底和准确度差的问题,本文提出了一种基于多接收天线之间相位差扩
文章摘要:在利用WiFi信号实现人群计数中,基于信道状态信息幅度(Channel State Information, CSI)存在分类模型滤波不彻底和准确度差的问题,本文提出了一种基于多接收天线之间相位差扩展矩阵信息的支持向量机(Support Vector Machine, SVM)增量学习算法。首先对CSI原始相位数据执行三重处理,以便最大程度的消除环境干扰和相位误差;另外提出了一种建立相位差扩展矩阵的思想,加入了不同人数场景的动态特征,提高了人群计数准确性。考虑到新增场景后,原训练数据和新增数据需合并进行重新训练,因训练数据过多会造成计算复杂度过高,为此我们提出了一种基于SVM增量学习分类算法,设计了一个循环迭代过程,实现了对增量数据在线学习的功能,且在提升人群计数准确率和降低计算复杂度方面均取得了较好的效果。算法结果表明,本文方法可实现实时人群计数, 在最大计数误差为1人时,平均计数精度可达95%以上,且随着场景增多在训练识别模型时节约的时间越显著。
文章关键词:
论文DOI:10.19304/J.ISSN1000-7180.2021.0464
论文分类号:TP181
文章来源:《中国测试》 网址: http://www.zgcszzs.cn/qikandaodu/2021/1022/1884.html