投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

自动化技术论文_基于深度神经网络的光纤传感识

来源:中国测试 【在线投稿】 栏目:期刊导读 时间:2022-01-14
作者:网站采编
关键词:
摘要:文章摘要:为了解决光纤传感过程中不同类型事件信号混叠造成识别概率降低的问题,搭建了一种采用差分相关计算的双光纤传感结构,并在此基础上提出了基于深度神经网络的信号识别

文章摘要:为了解决光纤传感过程中不同类型事件信号混叠造成识别概率降低的问题,搭建了一种采用差分相关计算的双光纤传感结构,并在此基础上提出了基于深度神经网络的信号识别算法。算法首先利用双光纤回波信号计算相关系数,再通过不同事件类型信号特征设置阈值范围,从而通过相关计算与阈值滤波提高信噪比。设计了包含三个隐藏层的深度神经网络模型,以分离输入层与相关运算层的形式完成了低频噪声抑制与信号混叠解调的目的。实验分别对三种常见入侵事件进行测试,并在此基础上分析了不同算法对组合事件的识别概率。结果显示,三种事件的回波谱形具有显著特征。三种算法对单一触发事件的识别概率均在95%以上,本算法的识别均值为98.5%。当两个事件同时触发时,三种算法的平均识别概率分别为73.4%、 84.5%和96.4%。当三个事件同时触发时,三种算法的平均识别概率分别为65.2%、78.3%和93.5%。可见,本算法在光纤传感中信号存在干扰及混叠时具有更好的识别效果。

文章关键词:

论文分类号:TP183;TP212

文章来源:《中国测试》 网址: http://www.zgcszzs.cn/qikandaodu/2022/0114/2138.html



上一篇:金属学及金属工艺论文_445J2超纯铁素体不锈钢
下一篇:有机化工论文_基于结构胶种类及搭接长度变化的

中国测试投稿 | 中国测试编辑部| 中国测试版面费 | 中国测试论文发表 | 中国测试最新目录
Copyright © 2019 《中国测试》杂志社 版权所有
投稿电话: 投稿邮箱: