投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

药学论文_基于PSO-BP神经网络与PSO-SVM的抗乳

来源:中国测试 【在线投稿】 栏目:期刊导读 时间:2022-01-18
作者:网站采编
关键词:
摘要:文章摘要:通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本。因此,为了能够使抗乳腺癌候选药

文章摘要:通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本。因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1974种化合物,首先利用随机森林分类器筛选出前20个对生物活性最具显著影响的分子描述符,并以此和pIC50值作为特征数据建立QSAR模型。其次,基于PSO优化BP神经网络对50个新化合物的生物活性值进行预测,模型拟合度为0.8337,根均方误差为0.7315,比优化前的BP神经网络预测值更贴合实际。随后为提高药物研发的成功率,依据已有的ADMET性质数据利用PSO优化SVM构建ADMET分类预测模型,算法交叉验证CV准确率达到94.0767%,5个指标模型的预测准确率均在79%以上。结果表明,所建立的模型比基准模型的预测性能更好,采用的预测策略是有效的,可为抗乳腺癌药物的研发提供借鉴。

文章关键词:

项目基金:《中国测试》 网址: http://www.zgcszzs.cn/qikandaodu/2022/0118/2147.html



上一篇:电信技术论文_双极化多任务平面近场测试系统设
下一篇:船舶工业论文_船舶航向模型参考自适应和最优控

中国测试投稿 | 中国测试编辑部| 中国测试版面费 | 中国测试论文发表 | 中国测试最新目录
Copyright © 2019 《中国测试》杂志社 版权所有
投稿电话: 投稿邮箱: